Untukmengerjakan soal ini kita lihat kubus abcdefgh dengan rusuk nya 6 kemudian kita diminta mencari jarak dari titik h ke DF jadi kita buat segitiga deh kita mencari jahat hahaha kan jadi segitiga DHF jadi seperti ini ya. Jadi itu adalah diagonal bidang jadi 6 akar 2 d adalah kutub jadi 6 DM adalah diagonal jadi 6 akar 3 untuk mencari hahaha Diketahuigaris 2x + 4y - 3 = 0 didilatasikan dengan skala -2 terhadap titik pusat 2 -4 tentukan bayangan garis? . bagaimana saran anda terhadap bank yang sakit tersebut?. 3. Suhardi ingin membeli 8 lembar sertifikat deposito nominal. Zonalatihan China berada dalam jarak 20 kilometer dari garis pantai Taiwan dan tersebar di beberapa titik. Latihan akan mencakup penembakan peluru tajam jarak jauh. Majalah milik pemerintah China, Global Times, melaporkan dalam latihan tersebut, rudal terbang di atas wilayah Taiwan untuk pertama kalinya. Misalkanjarak ke H ke DF adalah x. Kita dapat mencari jarak H ke DF dengan menggunakan kesamaan luas segitiga L_ {HDF}=L_ {HDF} LHDF = LHDF \frac {1} {2}\cdot HD\cdot HF=\frac {1} {2}\cdot DF\cdot x 21 β‹…HDβ‹…H F = 21 β‹…DF β‹…x 6\cdot 6\sqrt {2}=6\sqrt {3}\cdot x 6β‹…6 2 = 6 3β‹…x \frac {6\sqrt {2}} {\sqrt {3}}=x 36 2 = x hjarak titik H ke garis 1)1 4 Diketahui kubus ABCD.EFGH dengan rusuk 8c11 Titik A1 adalah titik 1 1 17c Tentukan jarak A1 ke EG uran berikut DF. P H = 1 2. H F. D H 10 3. P H = 10 2 .10 P H = 10 2 3 Γ— 3 3 P H = 10 3 6 Jadi, jarak titik H ke garis DF adalah 10 3 6. Contoh 4. (Latihan 1.2 Matematika Wajib Kelas 12) Diketahui kubus ABCD.EFGH dengan rusuk 8 cm. Titik M adalah titik tengah BC. Tentukan jarak M ke EG. Pembahasan: Jarak titik M ke garis EG adalah panjang garis MN. GiJhT. Blog Koma - Jarak dua titik dan titik ke garis merupakan salah satu materi yang cukup penting, biasanya dipakai salah satunya pada materi persamaan lingkaran. Pada artikel ini, kita akan mempelajari jarak antara dua titik, jarak sebuah titik ke garis, dan menentukan titik tengah jika diketahui dua titik. Jarak dua titik dan titik ke garis ada kaitannya dengan persamaan garis lurus, khususnya materi jarak titik ke garis. Garis yang digunakan adalah dalam bentuk persamaan garis lurus yaitu $ ax + by + c = 0 \, $ . Untuk konsep jarak yang dipakai adalah jarak terdekat baik dua titik maupun titik ke garis. Jarak dua titik A$x_1,y_1$ dan titik B$x_2,y_2$ Untuk menentukan jarak titik A$x_1,y_1$ dan titik B$x_2,y_2$, kita misalkan jaraknya sebagai mutlak dari AB. Sehingga rumus jaraknya $\begin{align} \text{jarak } & = \sqrt{\text{selisih } x^2 + \text{selisih } y^2} \\ AB & = \sqrt{x_2-x_1^2 + y_2-y_1^2} \\ & \text{ atau } \\ AB & = \sqrt{x_1-x_2^2 + y_1-y_2^2} \end{align} $ Contoh Tentukan jarak titik A2,1 ke titik B-3,4 ! Penyelesaian *. Menetukan jarak A ke B $AB$ $\begin{align} AB & = \sqrt{x_1-x_2^2 + y_1-y_2^2} \\ & = \sqrt{2-3^2 + 4-1^2} \\ & = \sqrt{5^2 + 3^2} \\ & = \sqrt{25 + 9} \\ & = \sqrt{34} \end{align} $ Jadi, jarak kedua titik adalah $ \sqrt{34} $ . Jarak titik A$x_1,y_1$ ke garis $ ax+by+c=0 $ Perhatiakan gambar dibawah ini. Terlihat bahwa jarak titik A ke garis adalah jarak terdekatnya yang dicapai pada saat garis AD tegak lurus dengan garis $ ax+by+c=0 . \, $ Jarak titik A ke garis $ ax+by=0 $ sama dengan jarak A ke titik D, hanya saja sulit untuk mencari titik D pada garis $ ax+by+c=0 $ . Tapi tenang saja, kita langsung bisa menggunakan rumus jarak titik ke garis tanpa harus mencari titik D. Rumus jarak titik A$x_1,y_1$ ke garis $ ax+by+c=0 $ $\begin{align} \text{jarak } & = \left \frac{ax_1+by_1+c}{\sqrt{a^2+b^2}} \right \end{align} $ Contoh Tentukan jarak titik A3,5 ke garis $ -3x - 4y = - 9 $ ! Penyelesaian *. Persamaan garis dirubah dalam bentuk $ ax+by+c=0 $ $ -3x - 4y = - 9 \rightarrow -3x - 4y + 9 = 0 $ *. Jarak A$x_1,y_1$ = 3,5 ke garis $ -3x - 4y + 9 = 0 $ $ \begin{align} \text{jarak } & = \left \frac{ax_1+by_1+c}{\sqrt{a^2+b^2}} \right \\ & = \left \frac{-3x - 4y + 9}{\sqrt{-3^2+-4^2}} \right \\ & = \left \frac{ - + 9}{\sqrt{9 + 16}} \right \\ & = \left \frac{-20}{\sqrt{25} } \right \\ & = \left \frac{-20}{ 5 } \right \\ & = \left -4 \right \\ & = 4 \end{align} $ Jadi, jarak titik ke garisnya adalah 4. Menentukan titik tengah jika diketahui dua titik Misalkan ada titik A$x_1,y_1$ dan titik B$x_2,y_2$ serta titik tengahnya C, kita akan menentukan titik tengah yaitu titik antara titik A dan titik B. Cara menentukan titik tengahnya C $\begin{align} \text{titik C } & = \left \frac{x_1+x_2}{2} , \frac{y_1+y_2}{2} \right \end{align} $ Contoh Diketahui titik A3,6 dan B1, -2. Tentukan titik tengah antara titik A dan titik B! Penyelesaian *. Menentukan titik tengahnya, misalkan titik C $\begin{align} \text{titik C } & = \left \frac{x_1+x_2}{2} , \frac{y_1+y_2}{2} \right \\ & = \left \frac{3 + 1}{2} , \frac{6 + -2}{2} \right \\ & = \left \frac{4}{2} , \frac{4}{2} \right \\ & = \left 2,2 \right \end{align} $ Jadi, titik tengahnya adalah C2,2. Diketahui kubus dengan panjang AB= 10 cm. Tentukan a. jarak titik F ke garis AC b. jarak titik H ke garis DF Diketauhi Panjang AB = 10 cm Pembahasan Kubus dengan rusuk a cm makadiagonal sisi = a√2 cm diagonal ruang = a√3 cm Contoh diagonal sisisisi alas AC dan BDsisi depan AF dan EB dan seterusnya Contoh diagonal ruangAG, HB, DF dan EC a Jarak F ke AC buat segitiga AFCkarenaAF = diagonal sisi depanFC = diagonal sisi kananAC = diagonal sisi alas maka segitiga AFC adalah segitiga sama sisi dengan sisi = 10√2 cm Misal O adalah titik tengah AC AO = OC = 5√2 cmJarak F ke AC adalah FOdengan pythagorasFO = √AFΒ² – AOΒ²FO = √10√2Β² – 5√2Β²FO = √200 – 50FO = √150FO = √25 . √6 FO = 5√6 cm Jadi jarak F ke garis AC = 5√6 cm Cara Cepat Tinggi segitiga sama sisi dengan panjang sisinya s adalah = 1/2 s√3,Karena segitiga AFC adalah segitiga sama sisi dengan sisi 10√2 cm maka tinggi segitiga tersebut FO adalah= 1/2 . 10√2 . √3 = 5√6 cm b Jarak H ke DF Buat segitiga HDF dan segitiga HDF adalah segitiga siku-siku di HUkuran sisi-sisinyaHD = 10 cm => rusuk kubusHF = 10√2 cm => diagonal sisi kubus DF = 10√3 cm => diagonal ruang Jarak H ke DF adalah tinggi segitiga HDF dengan alas DF Jika alasnya HF maka tingginya HDJika alasnya DF maka tingginya x Dengan kesamaan luas segitiga 1/2 Γ— alas Γ— tinggi maka1/2 Γ— DF Γ— x = 1/2 Γ— HF Γ— HDDF Γ— x = HF Γ— HDx = HF Γ— HD/DFx = 10√2 Γ— 10/10√3x = 10√2/√3 . √3/√3x = 10√6/3 x = 10/3 √6 Jadi jarak H ke garis DF adalah 10/3 √6 seorang pembalap motor mengendarai motornya dengan kecepatan 31 km/jam. jarak yang ditempuh adalah 217 km. jika pembalap start pada pukul pagi p … ukul berapakah ia mencapai finish?mohon dijawab terus menggunakan cara ya​ Dalam permainan yang terdapat nilai negatif. Nilai Dayu 2 kali lebih besar dari nilai Siti. Sedangkan nilai Siti -10 lebih kecil dari nilai Lani. Jika … nilai Lani -60, maka nilai Dayu adalah …. a. -32 b. -34 c. -35 d. -37dan caranya​ Bakso kotak ini berukuran 4√2 cm akan dikemas kedalam kesebuah kubis mika berukuran 50√2 berapa buah bakso kotak untuk memenuhi kubus mika tersebut? ​ 2/3 Γ— 6/7 4/5 =…HARUS PAKAI CARA​ 5 per 2 + 1 per 2 =caranya juga yamksh ​ A. Barisa Barisan adalah pola bilangan sederhana yang menentukan bilangan berikut nyaβ€’β€’β€’β€’Latihan1. 6 , 5 , 4 , ….2. 2 , 9 , 16 , 23 , ….3. 3 , 9 , … 27 , ….4. 4 , 12 , 20 , ….5. 1 , 5 , 25 , ….plss jawabb, di kumpulin besokk​ Hasil dari ∫ 3 x 2 βˆ’ 5 x + 4 dx =…?Nt Helps Please Ges _/\_ ^_^パ​ 1 3/5 + 2 4/7 – 1 1/3 = …HARUS PAKAI CARA​ tentukan HP penyelesaian dari persamaan berikut dan gambarkan grafiknya3x + 2y = 123x + 5y = 15​ sin 3x =cos-2x , 0Β° ≀ 2 ≀ 360°​ Ingat! Jarak titik ke garis adalah lintasan terpendek yang menghubungkan titik dan tegak lurus terhadap garis. Panjang diagonal ruang kubus yang memiliki rusuk adalah . Panjang diagonal bidang kubus yang memiliki rusuk adalah . Jika dalam suatu segitiga terdapat 2 garis yang dapat dijadikan tinggi dan dan 2 garis yang dapat dijadikan alas dan , maka berlaku . HF adalah diagonal bidang, sehingga . DF adalah diagonal ruang, sehingga . Perhatikan segitiga DFH memiliki 2 garis tinggi dan 2 garis alas, sehingga berlaku rumus kesamaan luas segitiga, maka Jadi, jarak titik H ke garis DF adalah . PembahasanIngat! Jarak titik ke garis adalah lintasan terpendek yang menghubungkan titik dan tegak lurus terhadap garis. Panjang diagonal ruangkubus yang memiliki rusuk adalah . Panjang diagonal bidang kubus yang memiliki rusuk adalah . Jika dalam suatu segitiga terdapat 2 garis yang dapat dijadikan tinggi dan dan 2 garis yang dapat dijadikan alas dan , maka berlaku . HF adalah diagonal bidang, sehingga . DF adalah diagonal ruang, sehingga . Perhatikan segitiga DFH memiliki 2 garis tinggi dan 2 garis alas, sehingga berlaku rumus kesamaan luas segitiga, maka Jadi, jarak titik H ke garis DF adalah .Ingat! HF adalah diagonal bidang, sehingga . DF adalah diagonal ruang, sehingga . Perhatikan segitiga DFH memiliki 2 garis tinggi dan 2 garis alas, sehingga berlaku rumus kesamaan luas segitiga, maka Jadi, jarak titik H ke garis DF adalah . Salam para BintangHalo semua pecinta pendidikan khususnya di bidang Matematika. Kali ini kita akan membahas materi lanjutan yaitu Jarak antara Titik dengan titik, jarak titik dengan Garis dan jarak titik dengan bidang. Nah, bagaimana cara memahaminya? Sebelumnya masuk ke materi ini wajib kalian pahami yaituJarakTitikBidang A. Jarak Titik dengan TitikJarak titikobjek ke titikobjek adalah adalah jarak terpendek yang ditarik dari kedua objek itu. Dalam geometri pun, jarak dua bangun didefinisikan sebagai panjang ruas garis terpendek yang menghubungkan dua titik pada bangun-bangun menentukan jarak antara titik dengan titik hendaknya mengingat konsep Teorema contoh berikut, agar lebih paham Pada gambar diatas yang merupakan sebuah kubus yang memiliki 8 buah titik yaitu titk A, B, C, D , E,F, G dan titik H. Jadi, Jarak antara titik dengan titik pada kubus sangat mudah kita tentukan apabila diketahui panjang rusuknya. Untuk memahaminya, perhatikan contoh soal berikutContoh 1 Diketahui sebuah kubus dengan panjang rusuk kubus adalah 5 cm. tentukanlah jarak antara titik dengan titik berikuta. Titik A ke titik Bb. Titik A ke titik Dc. Titik A ke titik Ed. Titik C ke titik Ge. Titik D ke titik Cf. Titik B ke titik CJawab Perhatikan gambar berikuta. Jarak titik A ke titik B adalah 5 cm b. Jarak titik A ke titik D adalah 5 cmc. Jarak titik A ke titik E adalah 5 cm d. Jarak titik C ke titik G adalah 5 cme. Jarak titik D ke titik C adalah 5 cmf. Jarak titik B ke titik C adalah 5 cm Contoh 2 Pada kubus dengan rusuk 8 cm terdapat titik P di tengah - tengah AB. Tentukan jarak titik G ke titik PJawab Perhatikan gambar berikutDengan mengitung dan memperhatikan apa yang diketahui, Untuk menentukan PG , maka perhatikan segitiga siku-siku PBCKemudian menentukan panjang BGKemudian kita tentukan panjang PGJadi, jarak titik G ke titik P adalah 12 cm. B. Jarak Titik dengan GarisJarak antara titik A dan ruas garis g adalah panjang ruas garis , dimana merupakan proyeksi A pada garis g Dalam menentukan jarak antara titik dengan titik hendaknya mengingat konsep Teorema contoh berikut, agar lebih paham Pada gambar diatas yang merupakan sebuah kubus yang memiliki 8 buah titik yaitu titk A, B, C, D , E,F, G dan titik H. Garis pada kubus adalah AB, BC, CD,AD, AE,BF,CG,DH,EF,FG,GH,EH, AC, BD, EG, FH, AG,BH,DF,dan CE. Jadi, Jarak antara titik dengan titik pada kubus sangat mudah kita tentukan apabila diketahui panjang rusuknya Untuk memahaminya, perhatikan contoh soal berikutContoh 3 Diketahui sebuah kubus dengan panjang rusuk kubus adalah 5 cm. tentukanlah jarak antara titik dengan garis berikuta. Titik A ke garis CDb. Titik B ke garis ADc. Titik C ke garis FGd. Titik C ke garis HGe. Titik H ke garis FGf. Titik F ke garis EHJawab Perhatikan gmbar berikuta. Jarak Titik A ke garis CD adalah 5 cmb. Jarak Titik B ke garis AD adalah 5 cmc. Jarak Titik C ke garis FG adalah 5 cmd. Jarak Titik C ke garis HG adalah 5 cme. Jarak Titik H ke garis FG adalah 5 cmf. Jarak Titik F ke garis EH adalah 5 cm Contoh 2 Pada dengan rusuk 6 cm, tentukanlah jarak titik B ke garis EGJawab Perhatikan gambar berikutPerhatikan segitiga BEG, dimana jarak B ke garis EG diwakili oleh ruas garis BP. Titik B tegak lurus dengan garis EG di titik P sehingga bisa diwakili segitiga BEP. Kemudian kita akan tentukan panjang EP dan panjang BP diperoleh dengan menggunakan rumus phytagoras diperolehJadi, jarak titik B ke garis EG adalah C. Jarak Titik dengan BidangJarak antara titik A dan bidang V adalah panjang ruas garis , dimana merupakan proyeksi A pada bidang VDalam menentukan jarak antara titik dengan bidang hendaknya mengingat konsep Teorema contoh berikut, agar lebih paham Pada gambar diatas yang merupakan sebuah kubus yang memiliki 8 buah titik yaitu titk A, B, C, D , E,F, G dan titik H. Bidang pada kubus adalah ABCD, ADHE, ABEF,BCFG,CDHG,EFGH. Jadi, Jarak antara titik dengan titik pada kubus sangat mudah kita tentukan apabila diketahui panjang rusuknya Untuk memahaminya, perhatikan contoh soal berikut Contoh 5 Diketahui sebuah kubus dengan panjang rusuk kubus adalah 5 cm. tentukanlah jarak antara titik dengan garis berikuta. Titik A ke bidang EFGHb. Titik B ke bidang CDHGc. Titik C ke bidang ABEFd. Titik C ke bidang ADHEe. Titik H ke bidang ABCDf. Titik F ke bidang ADHEJawab Perhatikan gmbar berikuta. Jarak Titik A ke bidang EFGH adalah 5 cmb. Jarak Titik B ke bidang CDHG adalah 5 cmc. Jarak Titik C ke bidang ABEF adalah 5 cmd. Jarak Titik C ke bidang ADHE adalah 5 cme. Jarak Titik H ke bidang ABCD adalah 5 cmf. Jarak Titik F ke bidang ADHE adalah 5 cmContoh 6 Pada kubus dengan rusuk 6 cm terdapat titik P ditengahtengah AE. Tentukanlah jarak titik P ke BDHFJawab Perhatikan gambar berikutDari gambar diperoleh bahwaJarak P ke bidang BDHF sama denganKarena , makaJadi, jarak titik P ke BDHF adalah Baca Juga Materi, Soal dan Pembahasan Terlengkap–Konsep Jarak garis dengan Garis-BersilanganMateri Ruang Tiga Dimensi Jarak Antara Garis dengan Bidang dan Jarak Antar Bidang dengan bidang ο»ΏJarak titik ke garis sama dengan jarak titik ke proyeksi titik tersebut pada garis. Rumus jarak titik ke garis digunakan saat diketahui letak koordinat sebuah titik dan persamaan garis. Di mana, letak koordinat titik dinyatakan dalam pasangan bilangan absis x dan ordinat yaitu Px, y. Sedangkan persamaan garis memiliki bentuk persamaan umum ax + by + c = 0 atau y = mx + c. Sobat idschool dapat menghitung panjang ruas garis yang menghubungkan jarak titik dengan garis melalui rumus jarak titik ke garis seperti pada bahasan di bawah. Sebagai contoh, diketahui titik P terletak pada koordinat 3, 4 dan sebuah garis memiliki persamaan g 3x + y + 12 = 0. Berapakah jarak titik P3, 4 ke garis 3x + y + 6 = 0? Baca Juga Cara Menentukan Persamaan Garis Singgung Parabalo Untuk mengetahui berapa jarak titik P ke garis g dapat diperoleh menggunakan rumus jarak titik ke garis. Bagaimana bentuk rumus jarak titik ke garis? Bagaimana penggunaan rumus jarak titik ke garis? Sobat idschool dapat mencari tahu jawabannya melalui ulasan di bawah. Table of Contents Bentuk Umum Rumus Jarak titik ke Persamaan Garis Contoh Soal dan Pembahasan Contoh 1 – Penggunaan Rumus Jarak Titik ke Garis Contoh 2 – Penggunaan Rumus Jarak Titik ke Garis pada Lingkaran Contoh 3 – Penggunaan Rumus Jarak Titik ke Garis pada Lingkaran Bentuk Umum Rumus Jarak titik ke Persamaan Garis Jarak titik ke titik menyatakan panjang ruas garis yang menghubungkan kedua titik tersebut. Sedangkan jarak titik ke garis sama dengan panjang ruas garis yang menghubungkan titik ke proyeksi titik tersebut pada garis. Proyeksi adalah penarikan bayangan ke suatu bidang dengan arah tegak lurus dengan bidang tersebut. Sehingga proyeksi titik ke garis adalah penarikan titik ke garis dengan arah tegak lurus garis. Panjang ruas garis yang menghubungkan titik dengan proyeksi titik pada garis sama dengan jarak titik ke garis. Ruas garis yang menghubungkan titik dan titik proyeksinya akan saling tegak lurus dengan garis. Ruas garis lain yang menghubungkan titik ke garis dengan arah tidak tegak lurus bukan merupakan jarak titik ke garis. Letak titik pada bidang koordinat dinyatakan dalam pasangan dua bilangan berurutan yang disebut absis sumbu x dan ordinat sumbu y. Sedangkan sebuah garis memiliki bentuk persamaan linear dengan dua variabel seperti ax + by + c = 0. Rumus jarak titik ke persaman garis sesuai dengan bentuk umum berikut. Baca Juga 3 Cara Menentukan Persamaan Garis Singgung pada Lingkaran Contoh Soal dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunaka untuk menambah pemahaman bahasan di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Penggunaan Rumus Jarak Titik ke Garis Sebuah garis terletak pada bidang datar dengan persamaan β„“ 3x + 4y = 15. Jika titik Pβ€’5, 5 terletak pada bidang yang sama dengan garis β„“ maka jarak titik P ke garis β„“ adalah … satuanA. 8B. 6C. 4D. 3E. 2 PembahasanJarak titik Pβ€’5, 5 ke garis β„“ 3x + 4y = 15 dapat dicari menggunakan rumus jarak titik ke garis seperti penyelesaian pada cara berikut. Jadi, jarak titik Pβ€’5, 5 ke garis β„“ 3x + 4y = 15 adalah 2 E Contoh 2 – Penggunaan Rumus Jarak Titik ke Garis pada Lingkaran Persamaan lingkaran dengan pusat di titik 2, β€’3 dan menyinggung garis x = 5 adalah ….A. x2 + y2 + 4x β€’ 6y + 9 = 0B. x2 + y2 β€’ 4x + 6y + 9 = 0C. x2 + y2 β€’ 4x + 6y + 4 = 0D. x2 + y2 β€’ 4x β€’ 6y + 9 = 0E. x2 + y2 + 4x β€’ 6y + 4 = 0 PembahasanDiketahui sebuah lingkaran dengan titik pusat 2, β€’3 dengan jari-jari yang belum diketahui. Keterangan lain yang diberikan adalah lingkaran tersebut meyinggung garis x = 5. Garis yang menyinggung lingkaran memotong lingkaran pada satu titik, di mana titik tersebut berada pada busur lingkaran. Di mana, jari-jari lingkaran dan garis yang menyinggung lingkaran selalu tegak lurus. Artinya jarak titik pusat lingkaran ke garis singgung lingkaran sama dengan panjang jari-jari lingkaran. Dengan demikian, jari-jari lingkaran dapat diperoleh dengan menghitung jarak titik P2, β€’3 ke garis x = 5. Cara menghitung jarak titik P2, β€’3 ke garis x = 5 dan cara menentukan persamaan lingkaran diselesaikan seperti pada penyelesaian berikut. Jadi, persamaan lingkaran dengan pusat di titik 2, β€’3 dan menyinggung garis x = 5 adalah x2 + y2 β€’ 4x + 6y + 4 = C Contoh 3 – Penggunaan Rumus Jarak Titik ke Garis pada Lingkaran Persamaan lingkaran yang berpusat di titik β€’1, 2 dan menyinggung garis x + y + 7 = 0 adalah ….A. x2 + y2 + 2x + 4y β€’ 27 = 0B. x2 + y2 + 2x β€’ 4y β€’ 27 = 0C. x2 + y2 + 2x β€’ 4y β€’ 32 = 0D. x2 + y2 β€’ 4x β€’ 2y β€’ 32 = 0E. x2 + y2 β€’ 4x + 2y β€’ 7 = 0 PembahasanPersamaan lingkaran dapat dibentuk dari pusat lingkaran dan jari-jari lingkaran. Dari informasi yang diberikan pada soal diketahui bahwa lingkaran terletak pada titik β€’1, 2 dengan jari-jari yang belum di ketahui. Panjang jari-jari lingkaran dapat ditentukan melalui rumus jarak titik ker garis yaitu untuk titik β€’1, 2 dan garis x + y + 7 = 0. Menghitung jarak titik β€’1, 2 ke garis x + y + 7 = 0 Sehingga diperoleh panjang jari-jari lingkara = jarak titik β€’1, 2 ke garis x + y + 7 = 0 sama dengan r = 4√2 satuan. Selanjutnya adalah menentukan persamaan lingkaran dengan titik pusat β€’1, 2 dengan jari-jari r = 4√2 satuan. Persamaan lingkaran [Pβ€’1, 2; r = 4√2]x β€’ β€’12 + y β€’ 22 = 4√22x + 12 + y β€’ 22 = 42 Γ— √22x2 + 2x + 1 + y2 β€’ 4y + 4 = 16 Γ— 2x2 + y2 + 2x β€’ 4y + 1 + 4 = 32x2 + y2 + 2x β€’ 4y + 5 β€’ 32 = 0x2 + y2 + 2x β€’ 4y β€’ 27 = 0 Jadi, persamaan lingkaran yang berpusat di titik β€’1, 2 dan menyinggung garis x + y + 7 = 0 adalah x2 + y2 + 2x β€’ 4y β€’ 27 = B Demikianlah tadi ulasan rumus jarak titik ke garis beserta contoh penggunannya dalam menyelesaikan soal. Terima kasih sudah mengunjungi idschooldotnet, semoga bermanfaat! Baca Juga Cara Menentukan Persamaan Lingkaran yang Diktahui Koordinat 3 Titik yang Terletak pada Busur Lingkaran

jarak titik h ke garis df